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Vibration of Initially Stressed Beam with Discretely Spaced 
Multiple Elastic Supports 

Nam-Gyu Park*, Seong-Ki Lee, Hyeong-Koo Kim, Ki-Sung Choi 
Nuclear Fuel Design Dep., KEPCO Nuclear Fuel Co. LTD. 

493, Deokjin-dong, Yuseong-gu, Daejeon 305-353, Korea 

Vibrat ion behavior  of  an initially stressed beam on discretely spaced mult iple  elastic supports 

has been studied and a theoretical  formulat ion of  the system is derived using the var ia t ional  

principle. Unl ike  beams on an elastic foundation,  discretely spaced supports can distort the 

beam mode shapes when the supports have rather large stiffness, i.e. usually expected beam 

modes cannot  be obtained,  but rather irregular mode shapes are observed. Conversely,  irregular 

modes can be recovered by changing initial stress. Since support  locat ion is closely associated 

with the dynamic characteristics, this work also discusses eigenvalue sensitivity with respect 

to the support  posi t ion and some numerical  examples are investigated to illustrate the above 

findings. 
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1. Introduction 

A beam is a very practical mechanical  com- 

ponent  as its utility can be seen in various fields 

of  industry. A fuel rod in a nuclear fuel assembly, 

obviously,  is understood as a beam since its 

length is much bigger than its cross sectional 

dimensions (Chen et al., 1972). The fuel rods in 

reactor are also initially stressed due to coolant  

pressure. It is known that the initial stress gives 

rise to stiffening or weakening of  a structure. The  

traction which causes initial stress on a structure 

can be the result of  gravity loads, as on a long 

drill pipe, or rotat ional  loads, as on a whir l ing 

propel ler  (Blevins, 1979). The initial stress or  

strain problem is classical, and the theoretical  

explanat ions  are found in the reference (Washizu, 

1983). It is also known that bending stiffness in 
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a beam or a plate is affected by membrane  forces 

(Cook  et al., 1989). For  example, in the case of  

a beam structure, tensile force acting axially 

on the ends of  the structure increase buckl ing 

resistance and natural  frequencies, while axially 

compressive forces decrease both buckling resist- 

ance and natural  frequencies. Since initial stress 

affects a structure's behavior  seriously, for control  

or design it is necessary to predict the behavior  or 

dynamic characteristics of  a structure with initial 

stress. 

Since the structure system with initial stress 

is an important  engineering problem, numerous 

reports have been published. Raju et al. inves- 

tigated the effects of  shear deformat ion and rotary 

inertia on the vibrat ion characteristics of  a pre-  

stressed simply supported beam (Raju et al., 

1986). Chen et al. studied the relat ionship be- 

tween the angle of  a curved beam with initial 

stress and the natural  frequency (Chen et al., 

1997). Yang et al. solved the stability of  init ially 

stressed thick laminated plates, and also studied 

the effects of  twisting and the global  material  

constants on the buckl ing (Yang et al., 1993). 

Fini te  element results for the buckl ing loads and 

moderately thick annular  plates subjected to in-  
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plane compressive loads at the outer edge were 

presented (Nayar et al., 1994). Carrera researched 

the effect of transverse normal stress on vibration 

of multi-layered structures (Carrera, 1999). 

The work studied dynamics of a fuel rod struc- 

ture in a fuel assembly with multiple supports in 

the initial stress state. The effects of initial stress 

and discretely spaced supporters on its vibration 

characteristics are discussed. Unlike the studies 

about a beam on an elastic foundation, the situa- 

tion wherein a beam is on discretely spaced elastic 

supports is analyzed in this paper. 

2. Equations of Motion 

2.1 G e n e r a l  f o r m u l a t i o n  

If a structure is pre-stressed and in equilibrium 

state, the equilibrium equation, neglecting body 

force, can be expressed as (Chen et al., 1997; 

Bolotin, 1963) 

[a,  ° ( a ~ +  u°.~) 1.~=0 (l) 

where 6°~j, c~jh, and /fl are initial stress tensor, 

Kronecker delta and initial deformation respec- 

tively. And the traction boundary condition is 

a,°s ( &v + u°.J) h i = / ,  ° (2) 

where ni is surface normal vector and po is ap- 

plied axial load. Alter perturbation these quanti- 

ties become 

ab = a~ ° + a,5 

u~' = u ° + uk (3) 

where the second terms on the right hand sides of 

the last Eq. (3) are caused by load perturbation. 

The potential energy of the perturbed system, 

which is shown in Fig. 1, on discretely spaced 

elastic supports, assuming that initial detbrmation 

gradient (u°o) is small, is 

__ I t 0 
I ] - - ~  foo ~ ( aiJ + a,J) ei, dVdt  

Fig. 1 

. / ' .  ~-I' 

QO ' ' 7  J'- ~-  ~ - - t ' ~ ' . ;  i 
• ...<-7-- "'q 

k • "t 

t / 

Elastic body with discretely spaced elastic 
supports 

where ki is i- th elastic spring constant, r is the 

number of elastic spring, and 8 is Dirac delta 

function. Note that summation rule is not appli- 

cable to the second term in the right hand side of 

Eq. (4). S denotes the surface where traction is 

specified. ¢ij in the first term of the equation is 

strain tensor denoted by 

I 
~ij = 2  ( ui,~ + u,,i + usjus.9 (5) 

Also the kinetic energy of the system, ignoring the 

influence of rotatory inertia, is written as 

-- -10 JVi=l 

where p means density. Equation of motion of 

the system can be derived by applying variation 

principle. First the variation of potential energy, 

considering Eqs. (I) and (2), is reduced to 

dVdt  
(7) 

+ fot ~ k i u ( t ,  2i) d t -  fo ~P,~uidVdt 

Neglecting higher order terms to construct linear 

equation in Eq. (5), it can be written as 

e ~ = + (  u~.~+ u~,i) (8) 

And finally the linearized formulation is obtained 

a s  

(9) 

/o'" /0'2, + 5-]kiu(t, 2~) d t -  iauMVdt 
i=l  
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Similarly the variation of the kinetic energy can 'T 

be derived, and Euler equation of the system is a~, I x, 

expressed as Eq. (10). k,~ 

[~ijJU(~OjUs, i] j - -  ~akiblt~(X,--Xi) = P H i  (10) Fig. 2 
' i = 1  

And the boundary condition can be written as 

0 ai~ns -4- 6s~ Us,sn ~ --  lbi ( 11 ) 

2.2 Beams on discretely spaced elastic 
supports 

Figure 2 shows geometry of a beam structure 

with several supports. It assumes that section pro- 

perties are not varying along the length and the 

forces acting on the ends are not changing in 

magnitude and direction. It is also presumed that 

shear strains are zero. Displacement field, con- 

sidering in-plane motion, can be expressed as 

U = u ( x ,  t ) - z w , x ( x ,  t) 

V=O (12) 

W = w ( x ,  t) 

where u, w are the axial and transverse dis- 

placements, respectively, z denotes the distance 

from the neutral axis. Then the stress-strain and 

strain-displacement relationships are given by 

axx=Eexx (13) 

exx = u ,x--  ZW,xx (14) 

where E is Young's modulus. Substituting Eqs. 

(13), (14) into Eq. (9) leads to 

d V d t  
. t O . I V  

(15) 
+ iu(t ,  x , )d t  

-=  

Further processing the above equation, the final 

formulation of the variation of the potential en- 

ergy can be expressed as 

aIl= ¢ x)Iwx~-a xAu,',= ~wS(x-x~ wdxdt ' = 

f y(E + A ,x e dxet (16) I 

+ [ (EAu.~ + &Au.x) 3U]} + [ ( E + & ) Iu:.~3w.~l} 
-[ ( (E + &) Iw,~x-&Aw.,) &@ 

k :  k ,  o ° . k ,  

An initially stressed beam with multiple 
elastic supports 

Considering the kinetic energy, the following 

equations of motion can be derived : 

(E+oOx) o Iw,xxxx- a;xA w,xx 
(17) r 

+ ~ k l w ~  ( x - x i )  + pAiiJ  = 0  
i =  1 

(E + a°xx) A u , x . = p A ~  (18) 

And boundary conditions are 

A ( E  + a°,)  U.x[0=0, A ( E  + cr°xx) U.xjL=0 

(E+a°x~)Iw'~x[°" (E+a°~) Iw ' xxJL=O (19) 

o 0 ( ( E + a°~) Iw,~xx - axxA  w,x) o = , 
( (E  o o + a~.) Iw,x~x- o ~ A w ,  x)I. = 0  

Note that the term, E+6°xx,  which was intro- 

duced from the initial stress consideration is in- 

volved in Eqs. (17) through (19), and it is no 

better than Eq. (10) and Eq. (ill). It can be seen 

that the initial stress affects the coefficient of the 

fourth derivative. In most cases the magnitude of 

the initial stress, [ ~r°xx [, is far below that of the 

elastic modulus, E. Thus it can be written that 

E + a°x~-~ E (20) 

If external force is perturbed after static equili- 

brium, the first traction boundary condition in 

Eq. (19) comes to 

A (E + ¢°~) u,~=Ap (21) 

Obviously the second condition of Eq. (19) is 

associated with moment and slope. Description 

of the last condition of Eq. (19) is about shear 

force and transverse displacement. The traction 

boundary condition is delineated in Fig. 3, and 

it is understood that the shear force acting on 

the boundary is also generated by the initial 

stress. Note that this work is only interested in 

transverse motion, therefore axial motion will be 

ignored. 
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~ n 

Fig. 3 Traction boundary condition when the ap- 
plied load is constant ; it can be thought that 
vertical force is equal to Aa°w,~ when trans- 
verse displacement is small 

3. Effect  of Support Posit ion over 
Eigenvalue 

In the case when the initial stress is present 

and is not small, design performance should be 

examined. Eigenvalue is an important dynamic 

characteristic in vibration and it is dependent on 

several design parameters. If conventional design 

parameters such as thickness is not allowed to 

be changed, it is reasonable to consider shape, 

boundary conditions, or support locations as its 

design variables. The concept of  shape design 

method was developed to account for the effects 

of variation of these configuration design para- 

meters (Haug etc., 1980; Lee etc., 1992). This 

paper focused on the study of eigenvalue sensi- 

tivity with respect to support locations. Since the 

location of each support in a structure is con- 

sidered as its configuration, shape design me- 

thodology can be applied. 

Note that, for simplified expression, a°x is 

replaced with o "° from now on. Also note that, 

presuming the applied initial stress is not large, 

the approximation of  Eq. (20) is adopted. As- 

suming harmonic motion, u (x, t) = u (x )  e ~ t ,  

and introducing operators D, and M, Eq. (17) 

results in the eigenvalue equation given by 

Du =.aMu (22) 

d 4 ao d z 
It is easy to show that D---E1 dx~q-- ~-x2+ 

r 

~ k ~ ( x - x ~ ) ,  M = o A ,  .a=w 2. If  we define func- 
i=  1 

tional a and d,  which is defined on inner pro- 

duct space, Eq. (22) can be cast in a bilinear form 

(Hughes, 1987) 

a(y, y)=Ad(y,  ~)) (23) 

where y denotes an eigenfunction and fi is an 

arbitrary displacement field that satisfies the 

boundary condition. Introducing inner product 

symbol ( ( - ,  . ) ) ,  a(y, 5) and d(y, Y) are 
defined as 

a(y, y) -(Dy, Y) 

foL[EIy +~k ~ (  ) ld x (24) = ,~xS.=- a°y, x9 x iy x - x i  .= 

d(y, y) ~(My, y)=foLpAyydx (25) 

As mentioned betbre, support locations are cho- 

sen as configuration design parameters. Design 

velocity field, which is the design trajectory of a 

particle at the beginning, characterizes configura- 

tion design. Thus it is necessary to define design 

velocity field to investigate eigenvalue sensitivity 

with respect to each support location. Introducing 

the design velocity, V ( x ) ,  the design sensitivity 

for simple eigenvalue can be found as (Haug etc., 

1980) 

.a'=2 f £ [ - c ( y ,  Vy~V) +,ae (y, V t V )  ] d.C2 
(26) 

+ £[c(y, Vy~V) -,~e(y, VyTV) ]( Vrn) dF 

where c, e are the kernel of a, d respectively in 

Eq. (24) and Eq. (25). It is understood that Eq. 

(26) is composed of two parts, domain integral 

in Q and boundary integral o n / ' .  Finally, consi- 

dering Eqs. (24) - - (26) ,  the sensitivity of the 

system can be written as 

2 f ' [ -  EIy,xx(Vyr V),= + a°y,x (Vyr V),x A'= 

V) ]dx - ~k~y(gyr V) ~(x-x~) + ~pA y(Vy r 
= (27) 

+ [EIy,xx (7yr V),xx- o°ya(VyrV) 

+ Y.k~y(VyrV) ~(x-xf) - ,tpAy(VyrV) (Vrn)1~ 
i=i 

It can be seen that the design velocity must have 
C ~ regularity since second derivatives of the 
velocity field is involved in Eq. (27). Note that 
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when a velocity field with C o regularity is used, 

Eq. (27) contains singularity. To satisfy the regu- 

larity condition, an exponential function as a 

design velocity is introduced, and it can be 

rewritten as 

V(x) =exp ( ( x - - ~ ) 2 ) A x  (28) 
q02 

where /10, q0 are constants and Ax means in- 

finitesimal movement. In fact the design velocity 

approaches 0 rapidly as q0 becomes smaller. It is 

predicted, as can be seen in Eq. (27), that the 

boundary movement has no significant effect un- 

der the above design velocity condition. In this 

case, a more simple formulation is possible, and 

that reduces to 

£=2foL[-EIy,~(VyrV) ,~+ a°y,x(Tyr V),~ 
r (29) 

-~k~y (Vyr V) ~ (x-x~) +~lpAy (Vyr V)]dx 

Fig. 4 A fuel assembly with 11 grids and fuel rods 

• ,_  . ~ ~ f _  - -  . .  

1 

Fig. 5 Details of a grid assembly ; plane view (left) 
and side view (right) 

4. Numerical  Example 

4.1 Nuclear fuel assembly structure 
A Nuclear reactor core consists of an array 

of square fuel assemblies, and the core is cooled 

and moderated by water at a pressure. Each fuel 

assembly is installed vertically in the reactor 

vessel and stands upright on the bottom of core. 

Each fuel assembly contains an array of fuel 

rods Which are supported at intervals along their 

length by grid assemblies to maintain the lateral 

spacing between the rods. 

The grid assembly consists of an arrangement 

of interlocked straps, containing springs and dim- 

ples formed within the straps, for gripping the fuel 

rods and holding them in the proper position 

within the assembly structure. Each fuel rod is 

given support at some contact points within each 

grid by a combination of support dimples and 

springs which are integral to the straps. 

Figure 4 shows one of nuclear fuel assembly 

consisted of I1 grid assemblies and fuel rods. 

Details of a grid are plotted in Fig. 5 and rods 

are inserted into the cells. It is reasonable to 

simplify a grid assembly as a spring since the 

grid supports fuel rods elastically. Since it is 

very difficult to analyze dynamics of an entire fuel 

assembly, this paper focuses on dynamics of a rod 

supported by several grid structures. 

4.2 Analysis of simplified fuel rod with 

supports 
To simplify the modeling of a fuel rod sup- 

ported by grids, grids were modeled as linear 

spring and it is assumed that elastic spring con- 

stants are equal and that they are symmetrically 

placed and equally spaced along the beam as is 

shown in Fig. 6. The spring constant of elastic 

support is set to I00 kN/m. The system, actually, 

can be understood as a simplified fuel rod sup- 

ported by grids in nuclear fuel assembly which is 

placed in high pressurized reactor vessel. Pressure 

in reactor vessel is about --15.5 Mpa which is 

much smaller than elastic modulus of steel at 

normal temperature, 200×103Mpa. Thus it is 

concluded that approximation of Eq. (20) has no 

significant errors. 

Figure 7 shows the mode shape which is differ- 

ent from the usual mode shape of a beam. The 

irregular shapes are caused by the very stiff elastic 

supports, but it is an expected phenomenon if 

the extreme case, k----oo, is considered. Based 
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A ~ ~ O. 05m 
2.05m 

)__. 

k~ k2 b k~ Its k0 

Fig. 6 A beam model for numerical simulation ; it is 

assumed that all supports are equally spaced 

and the beam section properties are not var- 

ying 

(a) First mode (b) Second mode 

(c) Third mode (d) Fourth mode 

Fig. 7 Irregular beam mode shapes when every 

spring constant is 100 kN/m and initial stress 

is free 

k=lOkN/m 

Fig. 8 First modes of beam with different spring 

constant under zero initial stress 

on  several  numer ica l  s imula t ions ,  wi thou t  ini t ia l  

load,  unusua l  modes  appear  when  stiffness comes 

to a b o u t  1 0 k N / m  in the beam s t ructure  as s h o w n  

in Fig. 8. It can be found that ,  if appl ied  in i t ia l  

stress is posi t ively increased,  the i r regular  modes  

fol low usual  shape  as s h o w n  in Fig. 9. It is 

interest ing to note  tha t  g lobal  shape  is s imi lar  

Table 1 First five natural frequencies (Hz) when 
applied initial stress is increasing 

Mode - - 3 0 M p a  - - 2 0 M p a  - - 1 0 M p a  0 M p a  
1st 134.9 142.7 148.8 155.0 

2nd 135.3 142.4 149.0 155.1 
3rd 148.1 149.3 155.2 160.9 
4th 150.6 155.6 160.4 165.0 
5th 158.9 162.7 166.4 169.9 

(a) Case of 50 Mpa 

(c) Case of 150 Mpa 

Fig. 9 

(b) Case of 100 Mpa 

(d) Case of 200 Mpa 

First modes vs. different initial stresses ; when 

every spring constant is 100 kN/m,  it can be 

seen that as the initial stress positively in- 

creasies, irregular first mode shape becomes 

ordinary shape with fluctuation 

0.010 

0.008 

0.006. 

OO04- 

0.002- 

0.000 
0.4 

Fig. 10 

/ 

/ 

/ 

0'6 o .  1'o 1'2 
distance 

One of the defined design velocity fields 

a case when center position is located at 

0.85 m ; ,u0=0.85, q0=0.1, Ax=0 .01  

to ha l f  sine curve but  f luc tua t ion  occurs  a r o u n d  

each elastic suppor t  in Fig. 9. Tab le  I shows some 

na tura l  f requencies  of  the s t ructure  when  appl ied 

pressure is - -30,  - -20,  - -10,  and  0 Mpa.  It can be 

seen tha t  e igenvalue  becomes  larger  as appl ied  

pressure approaches  more  posi t ive  values. 

To identify sensi t ivi ty with  respect to suppor t  

pos i t ion ,  Eq. (29) is eva lua ted  when  ini t ial  stress 
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Table 2 Sensitivity of the first five eigenvalues with respect to each support position 

739 

Initial Stress Mode DI D2 D3 D3 D5 D6 

-- 30Mpa 

1 1795.1 --28762.1 --12596.2 --4774.2 --1713.7 --540.8 
2 24142.5 --2080.4 --1908.5 --1488.9 --770.1 49.8 
3 4796.9 --3893.5 2345.5 7535.9 3277.0 --6651.8 
4 4589.3 --3192.2 1 1 1 2 5 . 5  --2139.0 --14808.6 1537.6 
5 3611.8 1328.3 1 0 4 0 2 . 5  --14682.6 11358.9 --3858.3 

- -20 Mpa 

1 1395.6 --32690.5 --14244.4 --5351.6 --1853.6 --572.3 
2 27924.9 --1563.7 --1465.5 --1202.4 --664.5 53.5 
3 5110.1 --3317.3 2631.3 7458.8 2049.8 --8172.2 
4 4931.5 --2578.8 1 1 2 3 7 . 3  --3614.6 --15112.4 1808.2 
5 3877.1 1782.7 1 0 0 9 9 . 2  --14442.5 1 1 5 9 1 . 4  --4378.6 

- -10Mpa  

1 927.7 --37619.8 --15983.2 --5808.8 --1884.2 --535.9 
2 32202.8 --1000.8 --957.3 --826.6 --497.3 53.8 
3 4999.3 --2481.3 2982.0 7160.2 11.4 --10214.6 
4 5014.0 --1705.6 11299.3 --5819.6 --15163.3 2154.8 
5 3981.0 2395.5 9449.2 --13881.1 1 1 8 3 9 . 3  --4994.7 

0 Mpa 

1 482.0 --43438.2 --17535.9 --5915.3 --1715.3 --415.6 
2 37252.5 --501.6 --488.5 --442.4 --293.9 48.3 
3 4344.0 --1474.6 3296.8 6421.5 --3389.8 --13025.4 
4 4746.7 --597.2 1 1 2 2 9 . 7  --9061.4 --14648.7 2604.3 
5 3876.0 3148.5 8189.5 --12791.3 1 2 0 8 1 . 8  --5706.8 

0- 

~ - l x10 ' - '  

~, -2x10 ~" 
• ~ . 

-3x 10 % 

~ -4x104 . 
uJ 

-5xl 0" 

lx104` 

@, 

m 
> .lx10 4 

D1 D'2 D3 D4 D5 I)6 

Design Parameter 

(a) First eigenvalue 

3,'(10 .% 

0J ;~ lO ' -  

O lx104 

• -~ 0.  LU 

\ 

D1 D2 03 04 D5 D6 

Design Parameter 

(c) Third eigenvalue 

Fig. 11 

I x10 '~ 

~ o 
._~ 
Q 

_~ - l x10  ~ ~> 

u3 

-2x I O' 

Ii 

D1 D2 D3 D4 D5 D6 

Design Parameter 

(b) Second eigenvalue 

The first tour eigenvalue sensitivity when initial stresses are different 

(m : - 3 0  Mpa, • : - 2 0  Mpa, • : --10 Mpa, • : 0 Mpa) 

D1 D2 D3 D4 D5 D6 

Design Parameter 

(d) Fourth eigenvalue 
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is set to --30, --20, -- 10, and 0 Mpa, respectively. 

Since the finite element model used for pre- 

vious example is too coarse to compute sensitivity 

with respect to support location, a finer model 

with 410 elements for the analysis was con- 

structed. In this case the first five eigenvalues are 

considered and the first six support locations are 

chosen as design parameters. One of design ve- 

locity field, shown in Fig. 10 is defined to allow 

only one support location to move using the 

previously mentioned exponential function. Sen- 

sitivity results are given with 1% uniform change 

in shape design parameter in Table 2. Negative 

sign means that eigenvalue will be decreased 

when support location moves to the right slightly. 

Variation of grid support location causes to 

eigenvalue change, but its propensity can be 

estimated based on the sensitivity analysis. For 

example, since the first natural frequency is the 

most sensitive to the second support location, D2, 

effective design of the first natural frequency is 

expected by controlling the second support loca- 

tion. Figure 11 shows eigenvalue sensitivity with 

respect to design parameters when initial stresses 

are different. In this case, based on Table 2 and 

Fig. 11, the sensitivity behavior does not change 

largely despite different initial stresses. 

5. Conclusions 

After deriving the dynamic equation of an 

initially stressed elastic body with discretely 

spaced elastic supports, vibration of the beam 

with supports was studied. This type of beam 

structure is common in nuclear fuel assembly. 

Thus, the simulated model geometry are chosen to 

be similar to those of real structure in nuclear 

reactors. 

When initial stress is involved, it causes the 

potential energy change. Although the initial 

stress effect is negligible compared to modulus of 

elasticity for most industrial environments, the 

coefficient of the fourth derivative in the dynamic 

equation is clearly under the influence of initial 

stress in this case. It is also noted that the tensile 

stress affects mode shapes of the system with stiff 

supports. Although irregular modes are produced 

in a fuel rod with stiff supports, unlike ordinary 

beam modes, the irregular modes change to ordi- 

nary beam modes as tensile stress increases. Con- 

cerning eigenvalue sensitivity, it is assumed that 

the modification of the system dimensions is re- 

stricted, hence support locations are considered as 

design parameters. Introducing the shape design 

concept, rate of eigenvalue change to support 

location is evaluated to consider effect of elastic 

supports. Although the sensitivity is varying with 

different initial stresses, it is less susceptible to the 

initial stress in this case. 
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